

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 1

Software Design and Specifications

URCVT v.1.2.0 02-NY Software Design and Specifications v.1.0.0 document is solely for use

in the State of New York. This document can be expanded or updated as is necessary or

required. Any recommendations listed in this document should not supersede user jurisdiction

procedures or other controlling governance entities.

URCVT v.1.2.0 02-NY Software Design and Specifications v.1.0.0

Coding Standards and Style

The URCVT adheres to all the guidelines and requirements in the VVSG Software

Requirements. We use Google Checkstyle for Java as our published, reviewed, and industry-

accepted code style. For details see:

github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml.

Code development and review processes are described in the URCVT v.1.2.0 13-NY Quality

Assurance Plan v.1.0.0.

Java 14

The tabulator is written in Java because it meets the VVSG requirements for software language

selection. It is widely supported and popular in both industry and the open-source community

for a wide variety of applications. It offers a mature and robust collection of third-party libraries.

The Java Runtime Environment is standard on our target platforms which means a simple

installation process. Our specific version of Java is OpenJDK 14.0.1, downloaded from here.

Open Source

We develop the tabulator as an open-source project for three main reasons:

1) Transparency: published source code increases public confidence in the application by giving

anyone the opportunity to review our work and the processes and methodology behind it.

2) Adoption: open source licensing encourages others to use the software to facilitate the

spread of ranked-choice voting.

3) Collaboration: open source licensing enables other software developers to contribute

enhancements to the project and incorporate it into other related projects (RCV visualizers,

policy research, etc..)

Architecture

The URCVT consists of one in-house java code module built from 23 source files. It relies on

basic java platform libraries (file I/O, string processing, logging) and several 3rd-party modules

listed below for reading and writing various file formats. These code modules are compiled and

packaged with a minimal java runtime environment (14.0.1) which executes compiled object

code, when installed and run on the target system.

https://jdk.java.net/archive/

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 2

3rd-party Modules

URCVT incorporates several 3rd-party modules which are all open-source. These meet the

VVSG requirements for third-party modules. They are mature and widely accepted and used.

None of them are modified in any way.

Module Name Version Purpose Link

Apache Commons

CSV

1.8 CSV "Comma

Separated Values"

reader / writer.

https://commons.apache.

org/proper/commons-

csv/user-guide.html

Apache POI OOXML 4.1.2 Excel spreadsheet

reader / writer.

https://poi.apache.org/api

docs/dev/org/apache/poi/

ooxml/package-

summary.html

Jackson Core 2.11.1 XML / JSON

streaming reader /

writer core

https://github.com/Faster

XML/jackson-core

Jackson Annotations 2.11.1 XML / JSON

deserialization

annotations

https://github.com/Faster

XML/jackson-annotations

Jackson Databind 2.11.1 XML / JSON

deserialization

https://github.com/Faster

XML/jackson-databind

Jackson Dataformat

XML

2.11.1 XML reader / writer https://github.com/Faster

XML/jackson-dataformat-

xml

Jupiter JUnit API 5.6.2 Automated testing

(used only during

development)

https://mvnrepository.co

m/artifact/org.junit.jupiter/

junit-jupiter-api

Jupiter JUnit Engine 5.6.2 Automated testing

(used only during

development)

https://mvnrepository.co

m/artifact/org.junit.jupiter/

junit-jupiter-engine

Software Limits:

Limitations of the Tabulation software i.e. how many cvrs can be tabulated are detailed in the

URCVT v.1.2.0 03-NY System Hardware Specification v.1.0.0 document.

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 3

Contest Tabulation Logic

Overview:

When the user triggers a contest tabulation, the application creates a new Tabulator Session

object to manage the process flow. The Tabulator Session loads, parses, and validates the

contest config file. If those steps succeed, it reads the cast vote records into memory, runs the

tabulation, and generates the results summary files. Throughout these processes logging

output is written to two locations as detailed in the Tabulator Logging Document.

1) Read the config file

2) Validate the config file

3) Read cvr files

4) Round by round tabulation of votes according to configuration

5) Generate reports

For detailed user guides, see URCVT v.1.2.0 08-NY System Operations Procedures v.1.0.0

and URCVT v.1.2.0 300-NY Configuration File Parameters v.1.0.0. Note that this document

covers all tabulation logic in the URCVT in order to fully describe the software design.

Reading a config file

When a user selects an existing config file to open, the tabulator parses the JSON file and

stores the information in a RawContestConfig object. This object is wrapped inside a

ContestConfig object. The ContestConfig object serves as an interface between the config file

and the rest of the application, providing extensive validation logic and a number of convenience

methods for accessing normalized versions of the config settings.

A config file includes a tabulatorVersion string and a collection of parameters organized into four

sections.

The tabulatorVersion is used to confirm that the version of the application that’s loading the

config file is compatible (specifically: not older than) the version of the application that created

the file.

The outputSettings section contains settings related to what forms of output should be

generated and where it should be saved on disk.

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 4

The cvrFileSources section is a list of one or more source file paths containing cast vote

records, along with the parameters necessary for the tabulator to parse the records

successfully.

The candidates section lists all of the candidate names/codes that appear in any of the CVR

source files.

The rules section contains all of the parameters that determine exactly how the application

should tabulate the cast vote records and produce results.

Writing the config file

A user can create a new config file or open an existing one and edit it. The GUI allows the user

to modify all of the parameters that populate a config file (except for tabulatorVersion, which is

determined by the app), run a validation to confirm that all of the settings in the file are valid,

and save the file.

Validation

Config file validation checks each aspect of the file and attempts to verify that all of the

individual settings are compatible with one another and should result in a successful tabulation.

This includes confirming that the tabulation rules are consistent, that the candidate names are

valid and don’t contain duplicates, and that each source cvr file exists on disk, and has the

proper parameters set for that cvr provider. The GUI prevents the user from creating a config file

that would fail many of these checks but the validation assumes nothing and provides an

additional layer of protection against user error. Because a user can create or modify a config

file simply using a text editor the tabulator can’t assume that a config file has only been modified

by its own GUI.

Reading CVR Files

Reading the cast vote records into memory consists of parsing the source files and creating a

CastVoteRecord object to represent each record. This object contains the candidate rankings

for the CVR along with additional information parsed from the source file such as an ID and a

precinct name. As the tabulation progresses, the CastVoteRecord object also stores information

about the CVR’s fate in each round (which candidate(s) its vote is counting toward and what

fraction of the vote belongs to each). The details of parsing each source file depend on that file’s

provider.

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 5

Tabulation of CVRs

(Note: that NYC uses only single winner ranked-choice voting rules. Where referenced, multi winner

tabulation rules will not be applicable.)

For the tabulation itself, the application creates a Tabulator object. This object’s tabulate method

runs a while loop that iterates until it determines that the tabulation is complete. Each iteration of

the loop is a new round. Each round starts by calling computeTalliesForRound, which iterates

over all of the cast vote records and sums up the total number of current votes for each

candidate. This involves a number of steps:

1. If the CVR has already been marked as exhausted, it is skipped.

2. If the CVR was counted toward a candidate in the previous round and that candidate is

still active, it’s counted toward that candidate again in this round.

3. If the CVR has no rankings at all, it is marked as exhausted.

4. The tabulator then begins iterating through the rankings in the CVR, starting with the

most preferred rank found (i.e. the lowest rank number, which is typically 1) and

proceeding in order. At each rank, it checks for a number of possible cases:

i. If the number of rankings skipped between the last ranking seen and this one

exceeds the maxSkippedRanksAllowed value in the config, the CVR is marked

as exhausted.

ii. If one or more of the candidates at this rank already appeared at another rank

and the config has enabled exhaustOnDuplicateCandidate, the CVR is marked

as exhausted.

iii. If the rankings at this rank constitute an overvote, the CVR is handled according

to the overvote rule set in the config.

iv. If a continuing candidate is found at this rank, the CVR is marked as counting

toward the candidate.

v. Otherwise, the CVR is marked as exhausted.

5. If the config has enabled tabulation by precinct, the method also updates the per-

precinct tallies for this round.

Next, if the tabulation is in the first round and/or the contest is for a single seat, the software

sets/updates the winning threshold (the number of votes that a candidate must meet or exceed

in order to be named a winner) based on the winning rules set in the config.

The software then checks whether there are any continuing candidates with vote tallies in the

current round that meet or exceed the winning threshold. Each of these candidates is marked as

a winner and, if the winning rules in the config indicate that surplus votes should be redistributed

(which is the case when the number of seats is greater than one and the winning mode is not

MULTI_SEAT_BOTTOMS_UP_UNTIL_N_WINNERS), then the software calculates a surplus

fraction and updates each CastVoteRecord object currently counting toward the winning

candidate to record the portion of that vote that should remain allocated to the candidate in

future rounds.

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 6

Finally, if no winners have been identified in the current round, the software determines whether

it should identify one or more candidates to eliminate. (This is true if a) the number of identified

winners is fewer than the number of seats for the contest, b) there are more than two candidate

remaining and the winning rules specify a single-seat contest that should continue until only two

candidates remain, or c) the winning mode is

MULTI_SEAT_BOTTOMS_UP_USING_PERCENTAGE_THRESHOLD.) In this case, the

candidate(s) to be eliminated are identified by trying the following methods in order until one of

them returns one or more candidates:

1. If the cast vote records include undeclared write-ins and this set of candidates have not

been eliminated yet, select them.

2. If the config specifies a minimum vote threshold for a viable candidate and one or more

continuing candidates has a tally below that threshold, select them.

3. If the config enables batch elimination, attempt to identify two or more candidates who

can be eliminated via this process.

4. Otherwise, select the remaining candidate with the lowest tally. (If multiple candidates

are tied for the lowest tally, select one according to the tie-breaking rule specified in the

config.)

The tabulator then determines whether it should continue to the next round and repeat the

process. It continues if one of the following conditions is true:

a. For a single-seat contest, one of these is true:

i. A winner has not been identified yet.

ii. “Continue until two candidates remain” is enabled and one of these is true:

1. There are more than two candidates remaining.

2. The eliminations that reduced the number of remaining candidates to two

happened in the current round. (This condition is included to ensure that

the tabulator will generate an additional round showing the final vote

tallies when only the last two candidates remain.)

b. For a multi-seat contest, one of these is true:

i. The winning mode is

MULTI_SEAT_BOTTOMS_UP_USING_PERCENTAGE_THRESHOLD and no

winners have been identified yet.

ii. The winning mode is not

MULTI_SEAT_BOTTOMS_UP_USING_PERCENTAGE_THRESHOLD and the

number of winners identified is fewer than the number of seats.

iii. The winning mode is neither

MULTI_SEAT_BOTTOMS_UP_USING_PERCENTAGE_THRESHOLD nor

MULTI_SEAT_BOTTOMS_UP_UNTIL_N_WINNERS and the number of winners

equals the number of seats, but the final winners were identified in the current

round. (Similar to above, this condition ensures that the tabulator will generate an

additional round showing the final surplus redistribution.)

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 7

When the tabulator determines that it should not continue tabulating, the tabulation is complete.

Reporting results

After the tabulation completes, the software generates results files and saves them to disk.

These results are based on the following data that the tabulation process has produced and

stored in memory:

● Which round each eliminated candidate was eliminated

● Which round each winning candidate was identified as a winner

● The winning threshold that was used to select the winner(s)

● Each candidate’s vote tally in each round

● If the config has enabled tabulating by precinct, each candidate’s vote tally in each

precinct in each round

● A record of the number of votes in each round that were transferred from each candidate

to each other candidate (or were exhausted)

● In a multi-seat contest involving surplus redistribution, the cumulative amount of residual

surplus in each round

● The number of exhausted ballots in each round, which are the number of ballots that

rank no continuing candidates - those candidates who are still active in the contest. This

ranked-choice voting specific category of ballots includes undervoted ballots and

overvoted ballots. Exhausted ballots are referred to as inactive ballots in summary

results files.

Using this data, the tabulator creates a ResultsWriter object that writes two files to disk:

1. A CSV spreadsheet that includes the round-by-round tally for each candidate, when

each candidate won or was eliminated, and related information

2. A JSON file that includes the same information found in the CSV spreadsheet, plus the

number of votes transferred from each candidate to each other candidate (or

exhaustion) in each round

If tabulating by precinct is enabled, the ResultsWriter also generates a CSV spreadsheet with

round-by-round tallies for each precinct found in the cast vote records.

Finally, if the config file specifies that the tabulator should generate CDF (Common Data

Format) output, it saves a CDF file in JSON format.

URCVT Logging

In addition to results files the URCVT generates various log outputs which describe:

- Program status

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 8

- Operations in progress

- Critical errors and warnings

- Tabulation-specific data: e.g. config file contents and how each vote counted in each round

- Additional system information

Log output is logically divided into two data streams:

Stream 1: Tabulator "Operator" Logging

This data stream captures the overall operation of the Tabulator which may include: loading,

editing, validating, and saving multiple config files, running cvr conversion functions, and

tabulating multiple contests.

File Name: rcv_0.log

File Rotation:

 When rcv_0.log reaches 50MB size it will be renamed along with any other preceding log files.

For example:

 rcv_0.log -> rcv_1.log

 rcv_1.log -> rcv_2.log

Then a new rcv_0.log file will be created and logging will continue.

This is a standard log rotation strategy that limits log file sizes for easier management.

File location: The Tabulator Operator Log will be created in the current working directory. When

launched using the rcv.bat file this is next to the rcv.bat file. For example:

C:\Users\MyUser\rcv\bin\rcv_0.log

Operator logging is duplicated in the black GUI console box at the bottom of the application

window. The console is provided as a convenience primarily for showing validation errors and

providing feedback to the user. See screenshot below for example of this console box.

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 9

Stream 2: Contest-Specific "Audit" Logging

This data stream captures information about a specific contest tabulation. It includes all the

same information written to the Execution Log (within the context of a single contest tabulation),

and includes a listing of the config file being tabulated, and a record of how each cvr was

counted in each round.

This data stream only begins logging after a config file has been validated. Thus all config

validation logging (including any validation failures) will only appear in the execution log. We

recognize that this behavior is non-intuitive and we have filed an issue to improve it:

https://github.com/BrightSpots/rcv/issues/125

File Name: [time_stamp]_audit_0.log where timestamp is created when the tabulation is

triggered and used on all output files for a given tabulation. For example: 2021-04-24_22-49-

49_audit_0.log

File Rotation uses the same strategy as the Execution Logging. When an audit log reaches

50MB size it will be renamed along with any other preceding log files. For example:

 2021-04-24_22-49-49_audit_0.log -> 2021-04-24_22-49-49_audit_1.log

 2021-04-24_22-49-49_audit_1.log -> 2021-04-24_22-49-49_audit_2.log

Then a new 2021-04-24_22-49-49_audit_0.log file will be created and logging will continue.

File Folder Location is specified in the config file under "outputDirectory"

URCVT v.1.2.0, Software Design and Specifications v.1.0.0. Document is created solely for the New York State

Board of Elections and is considered v.1.0.0 because the document is new for this system. 4/27/2021 10

Interface:

The tabulator was originally developed for a command-line interface. The GUI (graphical user

interface) was introduced both to make the process of configuring and running a tabulation

faster and more intuitive and to enable users with a less technical background to use the

software. The command-line interface still exists as a way to support execution via script, e.g.

for batch processing and test automation. The GUI prevents the user from creating a config file

that would fail many of these checks. A brief user guide to the Command Line Interface is

available in URCVT v.1.2.0 240-NY Command Line Instructions v.1.0.0. More information

about error messages can be found in URCVT v.1.2.0 430-NY Universal RCV Tabulator

Operator Log Messages v.1.0.0.

Supported File types:

The Tabulator uses the JSON format for contest configuration files and one style of results

summary output. JSON is simple, popular, and easy for humans and software to read and

write. The Tabulator uses CSV (comma-separated values) for the tabular version of its results

summary output. CSV is a non-proprietary format that all modern spreadsheet applications can

recognize. Tabulation output log files are produced in plain-text with a .log extension for clarity.

The Tabulator reads .xlsx (Microsoft Excel) and .xml (Extensible Markup Language) cvr and

elections metadata files supplied by various vendors (ES&S, Hart, CDF, Unisyn).

Additionally the following documents were used to design the Universal RCV Tabulator

software:

URCVT v.1.2.0 110-NY Tabulation Options for RCV Tabulation v.1.0.0

URCVT v.1.2.0 120-NY Process Ranked Choice Voting Contest v.1.0.0

URCVT v.1.2.0 130-NY Expected Outcome RCV Test Sets Single-Winner v.1.0.0

URCVT v.1.2.0 140-NY Expected Outcome RCV Test Sets Multi-Winner v.1.0.0

URCVT v.1.2.0 150-NY ES&S Ballot Limitations & Maximum Testing Range v.1.0.0

URCVT v.1.2.0 07-NY System Security Specification Requirements v.1.0.0

Document Revision History

Date Version Description Author

04/27/2021 1.0.0 Software Design Specifications Louis Eisenberg

